827 research outputs found

    On the Robust Synthesis of Logical Consensus Algorithms for Distributed Intrusion Detection

    Get PDF
    We introduce a novel consensus mechanism by which the agents of a network can reach an agreement on the value of a shared logical vector function depending on binary input events. Based on results on the convergence of finite-state iteration systems, we provide a technique to design logical consensus systems that minimizing the number of messages to be exchanged and the number of steps before consensus is reached, and tolerating a bounded number of failed or malicious agents. We provide sufficient joint conditions on the input visibility and the communication topology for the method’s applicability. We describe the application of our method to two distributed network intrusion detection problems

    Robust Discrete-Time Lateral Control of Racecars by Unknown Input Observers

    Get PDF
    This brief addresses the robust lateral control problem for self-driving racecars. It proposes a discrete-time estimation and control solution consisting of a delayed unknown input-state observer (UIO) and a robust tracking controller. Based on a nominal vehicle model, describing its motion with respect to a generic desired trajectory and requiring no information about the surrounding environment, the observer reconstructs the total force disturbance signal, resulting from imperfect knowledge of the time-varying tire-road interface characteristics, presence of other vehicles nearby, wind gusts, and other model uncertainty. Then, the controller actively compensates the estimated force and asymptotically steers the tracking error to zero. The brief also presents a closed-loop stability proof of the method, ensuring perfect asymptotic estimation and tracking by the controlled vehicle. The proposed solution advantageously needs no a-priori information about the total disturbance boundedness, additional variables to model uncertainty, or observer parameters to be tuned. Its effectiveness and superiority to existing methods are studied in theory and shown in simulations where a full racecar model, based on the vehicle dynamics blockset, is required to track aggressive maneuvers. Through a faster and more accurate disturbance estimation, the solution robustly ensures better dynamic responses even with measurement noise

    Lateral Wind Estimation and Backstepping Compensation for Safer Self-Driving Racecars

    Get PDF
    This paper addresses the lateral wind gust estimation and compensation problem for racecar models. A wind-sensorless solution, i.e. a solution not using direct wind measures, is proposed. More precisely, by modeling the wind disturbance as a fully unknown input signal, an input-state observer is derived using only information about the vehicle’s longitudinal speed and lateral pose relative to the road. The observer is characterized by a simple structure, explicit closed-form, direct implementability on a micro-controller, and dead-beat property, i.e. it ensures the convergence of the estimation error in a finite time. Moreover, leveraging on the reconstructed wind data, a backstepping wind-compensation controller is also proposed, allowing asymptotic tracking of a path with desired curvature and providing the end-user with a free control parameter specifying the desired tracking speed. Formal proofs of the estimation error and tracking error convergence are given. Performance evaluation of the proposed solution is obtained in simulation by closing in the loop the full nonlinear model of a real racecar, the Robocar system, with the proposed estimation and control method. Both the estimator and the controller are shown to outperform existing solutions, even in the presence of noisy measurements

    Block-Based Models and Theorem Proving in Model-Based Development

    Get PDF
    This paper presents a methodology to integrate computer-assisted theorem proving into a standard workflow for model-based development that uses a block-based language as a modeling and simulation tool. The theorem prover provides confidence in the results of the analysis as it guides the developers towards a correct formalization of the system under development

    Design and Validation of Cyber-Physical Systems Through Co-Simulation: The Voronoi Tessellation Use Case

    Get PDF
    This paper reports on the use of co-simulation techniques to build prototypes of co-operative autonomous robotic cyber-physical systems. Designing such systems involves a mission-specific planner algorithm, a control algorithm to drive an agent performing its task; and the plant model to simulate the agent dynamics. An application aimed at positioning a swarm of unmanned aerial vehicles (drones) in a bounded area, exploiting a Voronoi tessellation algorithm developed in this work, is taken as a case study. The paper shows how co-simulation allows testing the complex system at the design phase using models created with different languages and tools. The paper then reports on how the adopted co-simulation platform enables control parameters calibration, by exploiting design space exploration technology. The INTO-CPS co-simulation platform, compliant with the Functional Mock-up Interface standard to exchange dynamic simulation models using various languages, was used in this work. The different software modules were written in Modelica, C, and Python. In particular, the latter was used to implement an original variant of the Voronoi algorithm to tesselate a convex polygonal region, by means of dummy points added at appropriate positions outside the bounding polygon. A key contribution of this case study is that it demonstrates how an accurate simulation of a cooperative drone swarm requires modeling the physical plant together with the high-level coordination algorithm. The coupling of co-simulation and design space exploration has been demonstrated to support control parameter calibration to optimize energy consumption and convergence time to the target positions of the drone swarm. From a practical point of view, this makes it possible to test the ability of the swarm to self-deploy in space in order to achieve optimal detection coverage and allow unmanned aerial vehicles in a swarm to coordinate with each other

    A Self-Routing Protocol for Distributed Consensus on Logical Information

    Get PDF
    In this paper, we address decision making problems, depending on a set of input events, with networks of dynamic agents that have partial visibility of such events. Previous work by the authors proposed so-called logical consensus approach, by which a network of agents, that can exchange binary values representing their local estimates of the events, is able to reach a unique and consistent decision. The approach therein proposed is based on the construction of an iterative map, whose computation is centralized and guaranteed under suitable conditions on the input visibility and graph connectivity. Under the same conditions, we extend the approach in this work by allowing the construction of a logical linear consensus system that is globally stable in a fully distributed way. The effectiveness of the proposed method is showed through the real implementation of a wireless sensor network as a framework for the surveillance of an urban area

    Convergence Analysis of Distributed Set-Valued Information Systems

    Get PDF
    This paper focuses on the convergence of information in distributed systems of agents communicating over a network. The information on which the convergence is sought is not rep- resented by real numbers, as often in the literature, rather by sets. The dynamics of the evolution of information across the net- work is accordingly described by set-valued iterative maps. While the study of convergence of set-valued iterative maps is highly complex in general, this paper focuses on Boolean maps, which are comprised of arbitrary combinations of unions, intersections, and complements of sets. For these important class of systems, we provide tools to study both global and local convergence. A distributed geographic information system, leading to successful information reconstruction from partial and corrupted data, is used to illustrate the applications of the proposed methods

    Trajectory robust control of autonomous quadcopters based on model decoupling and disturbance estimation

    Get PDF
    In this article, a systematic procedure is given for determining a robust motion control law for autonomous quadcopters, starting from an input–output linearizable model. In particular, the suggested technique can be considered as a robust feedback linearization (FL), where the nonlinear state-feedback terms, which contain the aerodynamic forces and moments and other unknown disturbances, are estimated online by means of extended state observers. Therefore, the control system is made robust against unmodelled dynamics and endogenous as well as exogenous disturbances. The desired closed-loop dynamics is obtained by means of pole assignment. To have a feasible control action, that is, the forces produced by the motors belong to an admissible set of forces, suitable reference signals are generated by means of differentiators supplied by the desired trajectory. The proposed control algorithm is tested by means of simulation experiments on a Raspberry-PI board by means of the hardware-in-the-loop method, showing the effectiveness of the proposed approach. Moreover, it is compared with the standard FL control method, where the above nonlinear terms are computed using nominal parameters and the aerodynamical disturbances are neglected. The comparison shows that the control algorithm based on the online estimation of the above nonlinear state-feedback terms gives better static and dynamic behaviour over the standard FL control method

    Co-simulated digital twin on the network edge: A vehicle platoon

    Get PDF
    This paper presents an approach to create high-fidelity models suited for digital twin application of distributed multi-agent cyber–physical systems (CPSs) exploiting the combination of simulation units through co-simulation. This approach allows for managing the complexity of cyber–physical systems by decomposing them into multiple intertwined components tailored to specific domains. The native modular design simplifies the building, testing, prototyping, and extending CPSs compared to monolithic simulator approaches. A system of platoon of vehicles is used as a case study to show the advantages achieved with the proposed approach. Multiple components model the physical dynamics, the communication network and protocol, as well as different control software and external environmental situations. The model of the platooning system is used to compare the performance of Vehicle-to-Vehicle communication against a centralized multi-access edge computing paradigm. Moreover, exploiting the detailed model of vehicle dynamics, different road surface conditions are considered to evaluate the performance of the platooning system. Finally, taking advantage of the co-simulation approach, a solution to drive a platoon in critical road conditions has been proposed. The paper shows how co-simulation and design space exploration can be used for parameter calibration and the design of countermeasures to unsafe situations

    Towards an open database of assessment material for STEM subjects: requirements and recommendations from early field trials

    Get PDF
    If appropriately implemented, open databases of instruction material may help teaching and learning by providing content for teaching activities, scaffolding, and self-assessment. The paper presents the current results of the development and implementation of a database that is expressly built for promoting exchange of questions and exercises, together with the associated solutions among teachers for STEM subjects. Besides presenting and motivating the initiative (together with reporting its current status), the manuscript lists a series of lessons that have been learned while executing the project - including the need for proper management of authorship and version control of the uploaded material. Moreover, the manuscript describes which features any open database of instruction material should implement to aid improved usability, together with a series of nontrivial theoretical and practical problems for future scientific investigations (e.g., developing taxonomies for indexing the difficulty levels of the instruction material uploaded in the database that do not suffer from the subjective interpretability associated with the existing taxonomies)
    • …
    corecore